Faye Nie

■ niefan@stanford.edu | 🖸 <u>fannie1208</u> | 🛅 <u>fan-nie</u>

Professional Summary

Graduate student at Stanford with a specialization in AI/ML, with a strong focus on Generative AI, Large Language Models and Reinforcement Learning. Skilled in designing, implementing, and optimizing AI models using Python and PyTorch. Experienced with foundation models finetuning and inference.

Education

Stanford University

Sep 2024 – May 2026 (Expected)

Master in Electrical Engineering (AI Track)

Palo Alto, USA

• Relevant Coursework: CS221 (Artificial Intelligence), CS224W (Machine Learning with Graphs)

Shanghai Jiao Tong University

Sep 2020 - Jun 2024

B.Eng in Computer Science and Technology (IEEE Honor Class)

Shanghai, China

- GPA 92.79/100, Rank 2/122
- A+ Courses: Linear Algebra, Statistics, Natural Language Processing, Computer Vision, Artificial Intelligence, Computer Architecture, Computer Networks, Operating Systems and 18 others

École Polytechnique Fédérale de Lausanne (EPFL)

Feb 2023 – Jul 2023

Exchange Student of Computer Science

Lausanne, Switzerland

• Courses: Database System (6.0/6.0), Machine Learning (6.0/6.0), Data Visualization (6.0/6.0)

Publication

(* means equal contribution)

- 1. F. Nie, X. Hou, S. Lin, J. Zou, H. Yao, L. Zhang. FactTest: Factuality Testing in Large Language Models with Finite-Sample and Distribution-Free Guarantees. arXiv preprint arXiv:2411.02603, 2024.
- 2. Z. Li, F. Nie, Q. Sun, F. Da, H. Zhao. Uncertainty-Aware Decision Transformer for Stochastic Driving **Environments.** arXiv preprint arXiv:2309.16397, 2023. (CoRL 2024 Oral).
- 3. Z. Li*, F. Nie*, Q. Sun, F. Da, H. Zhao. Boosting Offline Reinforcement Learning for Autonomous Driving with Hierarchical Latent Skills. arXiv preprint arXiv:2309.13614. (ICRA 2024 Oral).
- 4. Q. Wu, F. Nie, C. Yang, J. Yan. Learning Divergence Feilds for Generalization with Data Geometries. (ICML 2024).
- 5. O. Wu, F. Nie, C. Yang, T. Bao, J. Yan. Graph Out-of-Distribution Generalization via Causal Intervention. The ACM Web Conference (WWW 2024 Oral).
- 6. Q. Wu, W. Zhao, C. Yang, H. Zhang, F. Nie, H. Jiang, Y. Bian, J. Yan. Simplifying and Empowering Transformers for Large-graph Representations. (NeurIPS 2023).
- 7. Z. Li, Q. Wu, F. Nie, J. Yan. Graphde: A Generative Framework for Debiased Learning and Out-ofdistribution Detection on Graphs. In Advances in Neural Information Processing Systems (NeurIPS 2022).

Research Experience

Factuality Testing in Large Language Models

May 2024 – Oct 2024

Submitted to ICLR2025; the First Author

Rutgers

- Proposed a statistical framework via hypothesis testing to evaluate whether an LLM can confidently provide correct answers to given questions with high-probability correctness guarantees.
- Designed a hypothesis test using Neyman-Pearson classification and leverage uncertainty quantification to control Type I errors, allowing the model to refrain from answering questions when uncertainty is high, improving generation accuracy by over 40% in QA and multiple-choice benchmarks.

Whitening-based Data Attribution and Data Selection

July 2024 – Present

In Submission to CVPR2025: the Co-First Author

VITA, EPFL

- Proposed a gradient-based data attribution algorithm with whitening matrix and cosine similarity.
- · Designed and implement an importance-weighted data selection algorithm leveraging attribution scores to select a subset of data that closely matches the target domain's distribution from large-scale datasets.
- Evaluated our proposed method on motion prediction, instruction-tuning and image classification datasets and had SOTA performance. Outperformed models trained on all data with only 5% or 20% data used.
- Accelerated training using PyTorch Lightning for distributed training and faster prototyping.

Uncertainty-Aware Decision Transformer for Driving Environments

Mar 2023 – Nov 2023

Full paper accepted by CoRL'24; the Second Author

MARSLab, THU

• Presented an uncertainty-aware decision transformer (DT) for a stochastic driving environment; estimated state uncertainties by the conditional mutual information and learned to perform aggressively or

- cautiously based on uncertainty levels.
- Designed, developed, and experimented with the GPT-based models and training pipelines; conducted 15+ experiments (e.g. planning performance, uncertainty calibration) and visualized robust and exceptional performance of UNREST across diverse driving scenarios; drafted the paper.
- Outperformed state-of-the-art baseline (SPLT) significantly by 11.5% in terms of driving score.

Skill-Based Offline Motion Planning

Dec 2022 - Sep 2023

Full paper accepted by ICRA'24; the Co-First Author

MARSLab, THU

- Introduced a novel skill-based framework enhancing offline Reinforcement Learning to overcome the challenge of long-horizon planning in driving environments.
- Employed a two-branch VAE to extract driving skills and visualized them by T-SNE to prove the effectiveness; Conducted motion planning in the CARLA simulator; Drafted the paper and created the demo video to showcase the key ideas and model performance.
- Outperformed state-of-the-art baseline (OPAL) considerably by 11.4% in terms of driving score.

Training Shift-Robust GNNs via Causal Intervention

Oct 2022 - May 2023

Full paper accepted by WWW'24; the Second Author

Thinklab, SJTU

- Proposed a novel approach with an environment estimator and a mixture-of-expert GNN predictor to train robust Graph Neural Networks under node-level distribution shifts.
- Designed and built GNN-based models and training pipelines; conducted 90+ experiments on six datasets to prove the efficacy of our model for OOD generalization.
- Outperformed state-of-the-art models by 12.9%, showing strong capabilities to generalize results on challenging tasks with significant dataset shift (e.g. node property prediction tasks).

Debiased Learning and Out-of-Distribution Detection on Graph Data. Mar 2022 – Sep 2022 Full paper accepted by NeurIPS'22: the Third Author Thinklab. SJTU

- Addressed out-of-distribution challenges on graph data by integrating a unified probabilistic model. Automated outlier identifications during training, and concurrently induced a detector for out-of-distribution detection during testing.
- Preprocessed the datasets and employed different methods to introduce OOD samples. Conducted 15+ experiments and visualized results to show the performance (debiasing and OOD detection) and robustness against baselines.
- Outperformed SOTA results with a great edge. E.g. outperforms by 9.31% on MNIST-75sp in the OOD detection task.

Internship Experience

VITA Lab, EPFL June 2024 – Present

Summer Research Intern, Supervised by Prof. Alexandre Alahi

Lausanne, Switzerland

- Researched on data attribution and data selection methods; Conducted experiments and drafted paper.
- Proposed and implement data selection algorithms on motion prediction datasets to improve domainspecific evaluation performance and accelerate the training process.

Shanghai Qizhi Institute.

July 2023 - Dec 2023

Research Intern, Supervised by Prof. Hang Zhao

Shanghai, China

• Led advanced research on autonomous driving prediction and planning tasks. Designed model optimization strategies and adjustments and implemented codebase on CARLA simulator and nuPlan dataset.

Biomap, Inc. July 2022 – Dec 2022

Algorithm R&D Intern

Beijing, China

- Contributed to the development of pretraining models on large-scale cell datasets to predict changes in gene expression after drug interference and implementing attention-free models for scalability.
- Collaborated with both technical and biomedical teams to analyze the performance of models on largescale biological datasets.
- Conducted extensive preprocessing of raw biological data, including cleaning and normalizing.
- Implemented discretization techniques such as equal frequency binning and custom binning to minimize data loss. Tuned hyperparameters, optimizing model performance and improving F1 Score by 6.2%.

Skills

Programming Languages: Python, C++, JavaScript, HTML, CSS, React, Bash/Shell Script, SQL **Tech Skills**: PyTorch, Linux, CUDA, GPU, DeepSpeed, Docker, scikit-learn, Pandas, NumPy, Git, Hugging Face Transformers, ensemble methods, model optimization, post-training methods, data structures **Cloud Platforms**: AWS, GCP, Kubernetes

Professional Service

Conference Reviewer: ICRA 2024-2025, NeurIPS 2025, ICLR 2025, AISTATS 2025